You are using an outdated browser. Please upgrade your browser to improve your experience.

{name}
{name}
{product_id}
{price} €
шт.
Сумма без налога с оборота:
0.00 €
Налог:
0.00 €
Общая сумма с налогом:
0.00 €
Ваша скидка:
0.00 €
help facebook
Доставка книг по всей Европе

Проблема Борсука

2.14 €
1.61 €

Описание

Брошюра написана по материалам лекции, прочитанной автором 4 декабря 2004 года на Малом мехмате МГУ для школьников 9—11 классов. В ней рассказывается об одной из знаменитых задач комбинаторной геометрии — гипотезе Борсука, которая утверждает, что в л-мерном пространстве всякое ограниченное множество можно разбить на n+l часть меньшего диаметра. Вначале подробно анализируются случаи малых размерностей и доказывается, что при п= 1, 2, 3 гипотеза верна. Далее приводятся различные оценки сверху для числа Борсука в зависимости от размерности. Кроме того, рассматривается связь гипотезы с другими проблемами и задачами комбинаторной геометрии (проблема освещения, задача Грюнбаума, задача о хроматическом числе). В заключительных главах рассматриваются контрпримеры к гипотезе Борсука и история понижения минимальной размерности, в которой строится контрпример, а также улучшения оценки снизу.

Многие главы снабжены задачами. Некоторые из них — это упражнения, прорешав которые, читатель лучше прочувствует материал. На некоторые задачи опирается основной текст. Сложные задачи отмечены звёздочками (некоторые являются открытыми проблемами).

Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей. От читателя потребуется знание элементарных понятий комбинаторики, а кроме того, будет полезным (но не обязательным) знакомство с аналитической геометрией и началами анализа.

1-е изд. — 2006 год.

0
ID Продукта
6144086
Автор
Издательство
Серия
ISBN
978-0-01-688238-8
images_checked
1728666101
Item code
6144086
Вес
59
Переплет
мягкий переплёт
Доступность
На складе
Размер посылки
XS
supplier_category
2022